Builder Walkthrough

Note: this article was updated 2021-04-13 with screenshots from the latest v2.5.1.x pre-release build; the extract interface enhancements shown will green-release with v2.5.2.

We’ve seen how to leverage the default instance of a class module to define a stateless interface that’s perfect for a factory method. At the right abstraction level, most objects will not require more than just a few parameters. Often, parameters are related and can be abstracted/regrouped into their own object. Sometimes that makes things expressive enough. Other times, there’s just nothing we can do to work around the fact that we need to initialize a class with a dozen or more values.

The example code for this article can be found in our Examples repository.

A class with many properties

Such classes are actually pretty common; any entity object representing a database record would fit the bill. Let’s make a User class. We’re using Rubberduck, so this will be quick!

We start with a public field for each property we want:

Option Explicit
Public Id As String
Public UserName As String
Public FirstName As String
Public LastName As String
Public Email As String
Public EmailVerified As Boolean
Public TwoFactorEnabled As Boolean
Public PhoneNumber As String
Public PhoneNumberVerified As Boolean
Public AvatarUrl As String

Now we hit Ctrl+` to trigger a parse, right-click any of the variables and select Encapsulate Field from the Refactor menu (or Ctrl+Shift+F if you haven’t tweaked the default hotkeys):

The command will be disabled if the caret/selection isn’t on a public field, or if the module has been modified since the last time Rubberduck parsed it.

Check the wrap fields in private type box, then click the Select all button and hit OK.

The Encapsulate Field refactoring also lets you rename the properties and their respective backing field.

Now the module looks like this, and all you had to do was to declare a bunch of public fields:

Option Explicit
Private Type TUser
    Id As String
    UserName As String
    FirstName As String
    LastName As String
    Email As String
    EmailVerified As Boolean
    TwoFactorEnabled As Boolean
    PhoneNumber As String
    PhoneNumberVerified As Boolean
    AvatarUrl As String
End Type
Private this As TUser
Public Property Get Id() As String
    Id = this.Id
End Property
Public Property Let Id(ByVal value As String)
    this.Id = value
End Property
Public Property Get UserName() As String
    UserName = this.UserName
End Property
Public Property Let UserName(ByVal value As String)
    this.UserName = value
End Property
Public Property Get FirstName() As String
    FirstName = this.FirstName
End Property
Public Property Let FirstName(ByVal value As String)
    this.FirstName = value
End Property
Public Property Get LastName() As String
    LastName = this.LastName
End Property
Public Property Let LastName(ByVal value As String)
    this.LastName = value
End Property
Public Property Get Email() As String
    Email = this.Email
End Property
Public Property Let Email(ByVal value As String)
    this.Email = value
End Property
Public Property Get EmailVerified() As Boolean
    EmailVerified = this.EmailVerified
End Property
Public Property Let EmailVerified(ByVal value As Boolean)
    this.EmailVerified = value
End Property
Public Property Get TwoFactorEnabled() As Boolean
    TwoFactorEnabled = this.TwoFactorEnabled
End Property
Public Property Let TwoFactorEnabled(ByVal value As Boolean)
    this.TwoFactorEnabled = value
End Property
Public Property Get PhoneNumber() As String
    PhoneNumber = this.PhoneNumber
End Property
Public Property Let PhoneNumber(ByVal value As String)
    this.PhoneNumber = value
End Property
Public Property Get PhoneNumberVerified() As Boolean
    PhoneNumberVerified = this.PhoneNumberVerified
End Property
Public Property Let PhoneNumberVerified(ByVal value As Boolean)
    this.PhoneNumberVerified = value
End Property
Public Property Get AvatarUrl() As String
    AvatarUrl = this.AvatarUrl
End Property
Public Property Let AvatarUrl(ByVal value As String)
    this.AvatarUrl = value
End Property

I love this feature! Rubberduck has already re-parsed the module, so next we right-click anywhere in the module and select the Extract Interface refactoring, and check the box to select all Property Get accessors (skipping Property Let):

Extract Interface can automatically implement the extracted interface for you, and you can extract a public interface out of a private class.

Having a read-only interface for client code that doesn’t need the Property Let accessors makes an objectively cleaner API: assignments are recognized as invalid at compile time.

We get a read-only IUser interface for our efforts (!), and now the User class has an Implements IUser instruction at the top, …and these new members at the bottom:

Private Property Get IUser_ThingId() As String
    IUser_ThingId = ThingId
End Property

Private Property Get IUser_UserName() As String
    IUser_UserName = UserName
End Property

Private Property Get IUser_FirstName() As String
    IUser_FirstName = FirstName
End Property

Private Property Get IUser_LastName() As String
    IUser_LastName = LastName
End Property

Private Property Get IUser_Email() As String
    IUser_Email = Email
End Property

Private Property Get IUser_EmailVerified() As Boolean
    IUser_EmailVerified = EmailVerified
End Property

Private Property Get IUser_TwoFactorEnabled() As Boolean
    IUser_TwoFactorEnabled = TwoFactorEnabled
End Property

Private Property Get IUser_PhoneNumber() As String
    IUser_PhoneNumber = PhoneNumber
End Property

Private Property Get IUser_PhoneNumberVerified() As Boolean
    IUser_PhoneNumberVerified = PhoneNumberVerified
End Property

Private Property Get IUser_AvatarUrl() As String
    IUser_AvatarUrl = AvatarUrl
End Property

The scary part is that it feels as though if Extract Interface accounted for the presence of a Private Type in a similar way Encapsulate Field does, then even the TODO placeholder bits could be fully automated. Might be something to explore there… Update: automagic implementation completed!

Now we have our read-only interface worked out, if we go by previous posts’ teachings, , that is where we make our User class have a predeclared instance, and expose a factory method that I’d typically name Create:

'@Description "Creates and returns a new user instance with the specified property values."
Public Function Create(ByVal Id As String, ByVal UserName As String, ...) As IUser
    '...
End Function

Without Rubberduck, in order to have a predeclared instance of your class you would have to export+remove the class module, locate the exported .cls file, open it in Notepad++, edit the VB_PredeclaredId attribute value to True, save+close the file, then re-import it back into your VBA project.

With Rubberduck, there’s an annotation for that: simply add '@PredeclaredId at the top of the class module, parse, and there will be a result for the AttributeValueOutOfSync inspection informing you that the class’ VB_PredeclaredId attribute value disagrees with the @PredeclaredId annotation, and then you apply the quick-fix you want, and you just might have synchronized hidden attributes across the with a single click.

'@PredeclaredId
Option Explicit

When it’s a factory method for a service class that takes in dependencies, 2-3 parameters is great, 5+ is suspicious. But here we’re taking in values, pure data – not some IFileWriter or other abstraction. And we need quite a lot of them (here 10, but who knows how many that can be!), and that’s a problem, because this is very ugly:

Set identity = User.Create("01234", "Rubberduck", "contact@rubberduckvba.com", False, ...)

Using named parameters can help:

Set identity = User.Create( _
    Id:="01234", _
    UserName:="Rubberduck", _
    Email:="contact@rubberduckvba.com", _
    EmailVerified:=False, _
    Phone:="555-555-5555", _
    PhoneVerified:=False, _
    ...)

But the resulting code still feels pretty loaded, and that’s with consistent line breaks. Problem is, that limits the number of factory method parameters to 20-ish (if we’re nice and stick to one per line), since that’s how many line continuations the compiler will handle for a single logical line of code.

Surely there’s a better way.

Building the Builder

I wrote about this pattern in OOP Design Patterns: The Builder, but in retrospect that article was really just a quick overview. Let’s explore the builder pattern.

I like to design objects from the point of view of the code that will be consuming them. In this case what we want to end up with, is something like this:

Set identity = UserBuilder.Create("01234", "Rubberduck") _
    .WithEmail("contact@rubberduckvba.com", Verified:=False) _
    .WithPhone("555-555-5555", Verified:=False) _
    .Build

This solves a few problems that the factory method doesn’t:

  • Optional arguments become explicitly optional member calls; long argument lists are basically eliminated.
  • Say Id and UserName are required, i.e. a User object would be invalid without these values; the builder’s own Create factory method can take these required values as arguments, and that way any User instance that was built with a UserBuilder is guaranteed to at least have these values.
  • If we can provide a value for EmailVerified but not for Email, or for PhoneVerified but not for Phone, and neither are required… then with individual properties the best we can do is raise some validation error after the fact. With a UserBuilder, we can have WithEmail and WithPhone methods that take a Verified Boolean parameter along with the email/phone, and guarantee that if EmailVerified is supplied, then Email is supplied as well.

I like to start from abstractions, so let’s add a new class module – but don’t rename it just yet, otherwise Rubberduck will parse it right away. Instead, copy the IUser interface into the new Class1 module, select all, and Ctrl+H to replace “Property Get ” (with the trailing space) with “Function With” (without the trailing space). Still with the whole module selected, we replace “String” and “Boolean” with “IUserBuilder”. The result should look like this:

'@Interface
Option Explicit
Public Function WithId() As IUserBuilder
End Function
Public Function WithUserName() As IUserBuilder
End Function
Public Function WithFirstName() As IUserBuilder
End Function
Public Function WithLastName() As IUserBuilder
End Function
Public Function WithEmail() As IUserBuilder
End Function
Public Function WithEmailVerified() As IUserBuilder
End Function
Public Function WithTwoFactorEnabled() As IUserBuilder
End Function
Public Function WithPhoneNumber() As IUserBuilder
End Function
Public Function WithPhoneNumberVerified() As IUserBuilder
End Function
Public Function WithAvatarUrl() As IUserBuilder
End Function

We’re missing a Build method that returns the IUser we’re building:

Public Function Build() As IUser
End Function

Now we add the parameters and remove the members we don’t want, merge the related ones into single functions – this is where we define the shape of our builder API: if we want to make it hard to create a User with a LastName but without a FirstName, or one with TwoFactorEnabled and PhoneNumberVerified set to True but without a PhoneNumber value… then with a well-crafted builder interface we can make it do exactly that.

Once we’re done, we can rename the class module to IUserBuilder, and that should trigger a parse. The interface might look like this now:

'@Interface
'@ModuleDescription("Incrementally builds a User instance.")
Option Explicit
'@Description("Returns the current object.")
Public Function Build() As IUser
End Function
'@Description("Builds a user with a first and last name.")
Public Function WithName(ByVal FirstName As String, ByVal LastName As String) As IUserBuilder
End Function
'@Description("Builds a user with an email address.")
Public Function WithEmail(ByVal Email As String, Optional ByVal Verified As Boolean = False) As IUserBuilder
End Function
'@Description("Builds a user with SMS-based 2FA enabled.")
Public Function WithTwoFactorAuthentication(ByVal PhoneNumber As String, Optional ByVal Verified As Boolean = False) As IUserBuilder
End Function
'@Description("Builds a user with an avatar at the specified URL.")
Public Function WithAvatar(ByVal Url As String) As IUserBuilder
End Function

Then we can add another class module, and type Implements IUserBuilder under Option Explicit, then hit Ctrl+` to parse. Unless you disabled the “check if code compiles before parsing” setting (it’s enabled by default), you should be seeing this warning:

The project can’t compile, because the interface isn’t implemented.

Click Yes to parse anyway (normally we only want compilable code, but in this case we know what we’re doing, I promise), then right-click somewhere in the Implements IUserBuilder statement, and select the Implement Interface refactoring:

Creating all these method stubs manually, or… letting Rubberduck create them all at once in a split-second?

The result is as follows, and makes a good starting point:

Option Explicit
Implements IUserBuilder
Private Function IUserBuilder_Build() As IUser
    Err.Raise 5 'TODO implement interface member
End Function
Private Function IUserBuilder_WithName(ByVal FirstName As String, ByVal LastName As String) As IUserBuilder
    Err.Raise 5 'TODO implement interface member
End Function
Private Function IUserBuilder_WithEmail(ByVal Email As String, Optional ByVal Verified As Boolean = False) As IUserBuilder
    Err.Raise 5 'TODO implement interface member
End Function
Private Function IUserBuilder_WithTwoFactorAuthentication(ByVal PhoneNumber As String, Optional ByVal Verified As Boolean = False) As IUserBuilder
    Err.Raise 5 'TODO implement interface member
End Function
Private Function IUserBuilder_WithAvatar(ByVal Url As String) As IUserBuilder
    Err.Raise 5 'TODO implement interface member
End Function

We’re “building” an IUser object. So we have a module-level User object (we need the class’ default interface here, so that we can access the Property Let members), and each With method sets one property or more and then returns the current object (Me). That last part is critical, it’s what makes the builder methods chainable. We’ll need a Build method to return an encapsulated IUser object. So the next step will be to add a @PredeclaredId annotation and implement a Create factory method that takes the required values and injects the IUser object into the IUserBuilder instance we’re returning; then we can remove the members for these required values, leaving only builder methods for the optional ones. We will also add a value parameter of the correct type to each builder method, and make them all return the current object (Me). Once the class module looks like this, we can rename it to UserBuilder, and Rubberduck parses the code changes – note the @PredeclaredId annotation (needs to be synchronized to set the hidden VB_PredeclaredId attribute to True:

'@PredeclaredId
'@ModuleDescription("Builds a User object.")
Option Explicit
Implements IUserBuilder
Private internal As User
'@Description("Creates a new UserBuilder instance.")
Public Function Create(ByVal Id As String, ByVal UserName As String) As IUserBuilder
    Dim result As UserBuilder
    Set result = New UserBuilder
    
    '@Ignore UserMeaningfulName FIXME
    Dim obj As User
    Set obj = New User
    obj.Id = Id
    obj.UserName = UserName
    
    Set result.User = internal
    Set Create = result
End Function
'@Ignore WriteOnlyProperty
'@Description("For property injection of the internal IUser object; only the Create method should be invoking this member.")
Friend Property Set User(ByVal value As IUser)
    If Me Is UserBuilder Then Err.Raise 5, TypeName(Me), "Member call is illegal from default instance."
    If value Is Nothing Then Err.Raise 5, TypeName(Me), "'value' argument cannot be a null reference."
    Set internal = value
End Property
Private Function IUserBuilder_Build() As IUser
    If internal Is Nothing Then Err.Raise 91, TypeName(Me), "Builder initialization error: use UserBuilder.Create to create a UserBuilder."
    Set IUserBuilder_Build = internal
End Function
Private Function IUserBuilder_WithName(ByVal FirstName As String, ByVal LastName As String) As IUserBuilder
    internal.FirstName = FirstName
    internal.LastName = LastName
    Set IUserBuilder_WithName = Me
End Function
Private Function IUserBuilder_WithEmail(ByVal Email As String, Optional ByVal Verified As Boolean = False) As IUserBuilder
    internal.Email = Email
    internal.EmailVerified = Verified
    Set IUserBuilder_WithEmail = Me
End Function
Private Function IUserBuilder_WithTwoFactorAuthentication(ByVal PhoneNumber As String, Optional ByVal Verified As Boolean = False) As IUserBuilder
    internal.TwoFactorEnabled = True
    internal.PhoneNumber = PhoneNumber
    internal.PhoneNumberVerified = Verified
    Set IUserBuilder_WithTwoFactorAuthentication = Me
End Function
Private Function IUserBuilder_WithAvatar(ByVal Url As String) As IUserBuilder
    internal.AvatarUrl = Url
    Set IUserBuilder_WithAvatar = Me
End Function

Now, when I said default instances and factory methods (here too) are some kind of fundamental building block, I mean we’re going to be building on top of that, starting with this builder pattern; the Create method is intended to be invoked off the class’ default instance, like this:

Set builder = UserBuilder.Create(internalId, uniqueName)

The advantages are numerous, starting with the possibility to initialize the builder with everything it needs (all the required values), so that the client code can call Build and consume a valid User object right away.

Side note about this FIXME comment – there’s more to it than it being a signpost for the reader/maintainer:

    '@Ignore UserMeaningfulName FIXME
    Dim obj As User

By default only TODO, BUG, and NOTE markers are picked up, but you can easily configure Rubberduck to find any marker you like in comments, and then the ToDo Explorer lets you easily navigate them all:

Rubberduck has a ToDo Explorer toolwindow that can be configured (click the cogwheel icon) to pick up “FIXME” anywhere in comments, anywhere in the project. Or “HERE BE DRAGONS”.

Another noteworthy observation:

'@Ignore WriteOnlyProperty
'@Description("For property injection of the internal IUser object; only the Create method should be invoking this member.")
Friend Property Set User(ByVal value As IUser)
    If Me Is UserBuilder Then Err.Raise 5, TypeName(Me), "Member call is illegal from default instance."
    If value Is Nothing Then Err.Raise 5, TypeName(Me), "'value' argument cannot be a null reference."
    Set internal = value
End Property

Me is always the current object, as in, an instance of this class module, presenting the default interface of this class module: the If Me Is UserBuilder condition evaluates whether Me is the object known as UserBuilder – and right now there’s no such thing and the code doesn’t compile.

Synchronizing Attributes & Annotations

Rubberduck knows we mean that class to have a VB_PredeclaredId attribute value of True because of the @PredeclaredId annotation, but it’s still just a comment at this point. Bring up the inspection results toolwindow, and find the results for the MissingAttribute inspection under Rubberduck Opportunities:

Clicking Fix all occurrences in project will automatically add all the missing attributes.

That didn’t fix the VB_PredeclaredId attributes! Why?! The reason is that the attribute isn’t missing, only its value is out of sync. We’ll have to change this (pull requests welcome!), but for now you’ll find the AttributeValueOutOfSync inspection results under the Code Quality Issues group. If you group results by inspection, its miscategorization doesn’t matter though:

When attributes and annotations contradict each other, the AttributeValueOutOfSync inspection starts issuing results.

Adjust the attribute value accordingly (right-click the inspection result, or select “adjust attribute value(s)” from the “Fix” dropdown menu), and now your UserBuilder is ready to use:

Dim identity As IUser
Set identity = UserBuilder.Create(uniqueId, uniqueName) _
                          .WithName(first, last) _
                          .WithEmail(emailAddress) _
                          .Build

…and misuse:

Set UserBuilder.User = New User '<~ runtime error, illegal from default instance
Debug.Print UserBuilder.User.AvatarUrl '<~ compile error, invalid use of property
Set builder = New UserBuilder
Set identity = builder.Build '<~ runtime error 91, builder state was not initialized
Set builder = New UserBuilder
Set builder = builder.WithEmail(emailAddress) '<~ runtime error 91

Conclusions

Model classes with many properties are annoying to write, and annoying to initialize. Sometimes properties are required, other times properties are optional, others are only valid if another property has such or such value. This article has shown how effortlessly such classes can be created with Rubberduck, and how temporal coupling and other state issues can be solved using the builder creational pattern.

Using this pattern as a building block in the same toolbox as factory methods and other creational patterns previously discussed, we can now craft lovely fluent APIs that can chain optional member calls to build complex objects with many properties without needing to take a gazillion parameters anywhere.

Password Authentication

Authenticating the user of our application is a common problem, with common pitfalls – some innocuous, some fatal. It’s also a solved problem, with a fairly standard solution. Unfortunately, it’s also a problem that’s too often solved with naive, “good-enough” solutions that make any security expert twitch.

The vast majority of scenarios don’t need any custom authentication. Accessing a SQL Server database? Use Windows Authentication! Windows Auth not possible? Use SQL Authentication over a secure network! App authentication isn’t for authenticating a user with a server. More like, the application itself needs a concept of users and privileges granted to certain groups of users, and so we need to prompt the user for a user name and a password. What could possibly go wrong?

Security First: Threat Model Assessment

The first question we need to ask ourselves, is literally “what could possibly go wrong?” — as in, what are we trying to do? If the answer is along the lines of:

  • Enhance user experience with tailored functionality
  • Grouping users into “roles” for easier management
  • Prevent accidental misuse of features

…then you’re on the right track. However if you’re thinking more in terms of…

  • Prevent intentional misuse of features
  • Securely prevent groups of users from accessing functionalities
  • Securely $(anything)

…then you’re going to need another kind of approach. VBA code is not secure, period. Even if the VBA project is password-protected, the VBE can be tricked into unlocking it with some clever Win32 API calls. So, the threat model should take into account that a power user that wants to see your code… will likely succeed …pretty easily, too.

That doesn’t mean VBA code gets a pass to do everything wrong! If you’re going to do password authentication, you might as well do it right.

Where to store users’ passwords?

We’ve all done this:

Private Const ADMIN_PWD As String = "@Dm!n"

…without realizing that the code of a VBA project – even locked – is compressed into a binary file that’s zipped with the rest of the Excel host document. But nothing prevents anyone from peeking at it, say, with Notepad++

Of course it had to be on line 42.

Obviously, hard-coding passwords is the worst possible idea: we need somewhere safe, right?

Truth is, not really. You could have everything you need in a hidden worksheet that anyone can see if they like; a database server is ideal, of course, but not necessary, if parts of your host document can be used as one (looking at you too, Microsoft Access).

The reason it doesn’t matter if the “passwords table” is compromised, is because you do not store passwords, period. Not even encrypted: the “passwords table” contains nothing that can be processed (decrypted) and then used as a password.

What you store is a hash of the users’ passwords, never the passwords themselves. For example, if a user’s password was password and we hashed it with the SHA256 hashing algorithm, we would be storing the following value:

5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8

Contrary to encryption and encoding, there is by definition no way to revert a hash value back to the original string password. It’s possible that some random string that’s not password might produce the same hash value (i.e. a hash collision) – but very (very very) unlikely, at least with SHA256 or higher.

There are many different hashing algorithms, producing values of varying length, at varying speeds: with cryptographically secure requirements, using slow algorithms that produce values with a low risk of collision will be preferred (harder/longer to brute-force). Other applications might use a faster MD5 hash that’s “good enough” if not very secure, for many things but a password.

Now obviously, if any two users have the same password, their SHA256 hash would be the same. If that’s a concern (it should be), then the solution is to use a salt: prepend a random string to the password, and hash the salted password string – assuming all users use a different salt value (it can be safely stored alongside the user record), then it becomes impossible to tell whether any two users have the same password just by looking at the table contents… and this is why a hidden worksheet is a perfectly fine place to store your user passwords if you can’t use a database for whatever reason.

Even if you know every user’s hash and salt value, you can’t know what password could possibly be prefixed with that particular salt value for a SHA256 hash algorithm to give exactly these specific bytes. These users all have the same password.

Storing a salted password hash prevents “translating” the hash values wholesale, using a lookup/”rainbow” table that contains common passwords and their corresponding hash representation. Even if one password is compromised, other users with the same password wouldn’t be, because their hash is different, thanks to the “salt” bytes.

Whether we code in C#, PHP, JavaScript, Python, Java, ..or VBA, there’s simply not a single valid reason to store user passwords in plain text. But how do we get that hash value out of a password string in the first place?

Hashing with VBA

There’s… no built-in support whatsoever for hashing in VBA… but nothing says we can’t make explicit late binding and the .NET Framework work for us! Note that we’re invoking the ComputeHash_2 method, because it’s an overload of the ComputeHash method that takes the byte array we want to give it. COM/VBA doesn’t support method overloading, so when .NET exposes overloads to COM, it appends _2 to the method name, _3, _4, and so on for each overload. The order depends on… the order they were written to the IDL, which means you could… just trust Stack Overflow on that one, and go with ComputeHash_2:

Public Function ComputeHash(ByVal value As String) As String
    Dim bytes() As Byte
    bytes = StrConv(value, vbFromUnicode)
    
    Dim algo As Object
    Set algo = CreateObject("System.Security.Cryptography.SHA256Managed")
    
    Dim buffer() As Byte
    buffer = algo.ComputeHash_2(bytes)
        
    ComputeHash = ToHexString(buffer)
End Function
Private Function ToHexString(ByRef buffer() As Byte) As String
    Dim result As String
    Dim i As Long
    For i = LBound(buffer) To UBound(buffer)
        result = result & Hex(buffer(i))
    Next
    ToHexString = result
End Function

This code would feel right at home in a SHA256Managed standard module, or it could be a class that implements some IHashAlgorithm interface with a ComputeHash method – and with it we have everything we need to start handling password-based authentication in VBA …by today’s best practices.

What follows is an object-oriented approach to leveraging this function in a VBA project that needs to authenticate a user. An online copy of this code can be downloaded from GitHub: https://github.com/rubberduck-vba/examples/tree/master/Authentication


IHashAlgorithm

I like having functionality neatly abstracted, so instead of just having a public ComputeHash function that computes the SHA256 hash for a given string, I’ll have a class module formalizing what a hash algorithm does:

'@Folder("Authentication.Hashing")
'@ModuleDescription("An interface representing a hashing algorithm.")
'@Interface
Option Explicit
'@Description("Computes a hash for the given string value.")
Public Function ComputeHash(ByVal value As String) As String
End Function

One implementation would be this SHA256Managed class module:

'@Folder("Authentication.Hashing")
'@PredeclaredId
Option Explicit
Implements IHashAlgorithm
Private base As HashAlgorithmBase
'@Description("Factory method creates and returns a new instance of this class.")
Public Function Create() As IHashAlgorithm
    Set Create = New SHA256Managed
End Function
Private Sub Class_Initialize()
    Set base = New HashAlgorithmBase
End Sub
Private Function IHashAlgorithm_ComputeHash(ByVal value As String) As String
    Dim bytes() As Byte
    bytes = StrConv(value, vbFromUnicode)
    
    Dim algo As Object
    Set algo = CreateObject("System.Security.Cryptography.SHA256Managed")
    
    Dim buffer() As Byte
    buffer = algo.ComputeHash_2(bytes)
        
    IHashAlgorithm_ComputeHash = base.ToHexString(buffer)
End Function

By coding against an interface (i.e. by invoking ComputeHash off the IHashAlgorithm interface), we are making the code easier to modify later without breaking things: if a functionality needs a MD5 hash algorithm instead of SHA256, we can implement a MD5Managed class and inject that, and no client code needs to be modified, because the code doesn’t care what specific algorithm it’s working with, as long as it implements the IHashAlgorithm interface.

The HashAlgorithmBase class is intended to be used by all implementations of IHashAlgorithm, so we’re using composition to simulate inheritance here (the coupling is intended, there’s no need to inject that object as a dependency). The class simply exposes the ToHexString function, so that any hashing algorithm can get a hex string out of a byte array:

'@Folder("Authentication.Hashing")
'@ModuleDescription("Provides common functionality used by IHashAlgorithm implementations.")
Option Explicit
'@Description("Converts a byte array to a string representation.")
Public Function ToHexString(ByRef buffer() As Byte) As String
    Dim result As String
    Dim i As Long
    For i = LBound(buffer) To UBound(buffer)
        result = result & Hex(buffer(i))
    Next
    ToHexString = result
End Function

At this point we can already test the hashing algorithm in the immediate pane:

?SHA256Managed.Create().ComputeHash("abc")
BA7816BF8F1CFEA414140DE5DAE2223B0361A396177A9CB410FF61F2015AD

The next step is to create an object that’s able to take user credentials, and tell its caller whether or not the credentials are good. This is much simpler than it sounds like.

UserAuthModel

The first thing we need to address, is the data we’re going to be dealing with – the model. In the case of a dialog that’s prompting for a user name and a password, our model is going to be a simple class exposing Name and Password read/write properties, and here an IsValid property returns True if the Name and Password values aren’t empty:

'@Folder("Authentication")
Option Explicit
Private Type TAuthModel
    Name As String
    Password As String
    IsValid As Boolean
End Type
Private this As TAuthModel
Public Property Get Name() As String
    Name = this.Name
End Property
Public Property Let Name(ByVal value As String)
    this.Name = value
    Validate
End Property
Public Property Get Password() As String
    Password = this.Password
End Property
Public Property Let Password(ByVal value As String)
    this.Password = value
    Validate
End Property
Public Property Get IsValid() As Boolean
    IsValid = this.IsValid
End Property
Private Sub Validate()
    this.IsValid = Len(this.Name) > 0 And Len(this.Password) > 0
End Sub

Since this isn’t a model for changing a password, the validation logic doesn’t need to worry about the password’s length and/or content – only that a non-empty value was provided; your mileage may vary!

If we wanted the UI to provide a ComboBox dropdown to pick a user name, then the model class would need to encapsulate an array or collection that contains the user names, and that array or collection would be provided by another component.

IAuthService

When my object-oriented brain thinks “authentication”, what shapes up in my mind is a simple interface that exposes a single Boolean-returning function that takes user credentials, and returns True when authentication succeeds with the provided credentials.

Something like this:

'@Folder("Authentication")
'@ModuleDescription("An interface representing an authentication mechanism.")
'@Interface
Option Explicit
'@Description("True if the supplied credentials are valid, False otherwise.")
Public Function Authenticate(ByVal model As UserAuthModel) As Boolean
End Function

If we have a hidden worksheet with a table containing the user names, salt values, and hashed passwords for all users, then we could implement this interface with some WorksheetAuthService class that might look like this:

'@Folder("Authentication")
'@ModuleDescription("A service responsible for authentication.")
'@PredeclaredId
Option Explicit
Implements IAuthService
Private Type TAuthService
    Algorithm As IHashAlgorithm
End Type
Private Type TUserAuthInfo
    Salt As String
    Hash As String
End Type
Private this As TAuthService
Public Function Create(ByVal hashAlgorithm As IHashAlgorithm)
    With New WorksheetAuthService
        Set .Algorithm = hashAlgorithm
        Set Create = .Self
    End With
End Function
Public Property Get Self() As IHashAlgorithm
    Set Self = Me
End Property
Public Property Get Algorithm() As IHashAlgorithm
    Set Algorithm = this.Algorithm
End Property
Public Property Set Algorithm(ByVal value As IHashAlgorithm)
    Set this.Algorithm = value
End Property
Private Function GetUserAuthInfo(ByVal user As String, ByRef outInfo As TUserAuthInfo) As Boolean
'gets the salt value & password hash for the specified user; returns false if user can't be retrieved.
    On Error GoTo CleanFail
    With PasswordsSheet.Table
        
        Dim nameColumnIndex As Long
        nameColumnIndex = .ListColumns("Name").Index
        
        Dim saltColumnIndex As Long
        saltColumnIndex = .ListColumns("Salt").Index
        
        Dim hashColumnIndex As Long
        hashColumnIndex = .ListColumns("PasswordHash").Index
        
        Dim userRowIndex As Long
        userRowIndex = Application.WorksheetFunction.Match(user, .ListColumns(nameColumnIndex).DataBodyRange, 0)
        
        outInfo.Salt = Application.WorksheetFunction.Index(.ListColumns(saltColumnIndex).DataBodyRange, userRowIndex)
        outInfo.Hash = Application.WorksheetFunction.Index(.ListColumns(hashColumnIndex).DataBodyRange, userRowIndex)
    
    End With
    GetUserAuthInfo = True
CleanExit:
    Exit Function
CleanFail:
    Debug.Print Err.Description
    Debug.Print "Unable to retrieve authentication info for user '" & user & "'."
    outInfo.Salt = vbNullString
    outInfo.Hash = vbNullString
    GetUserAuthInfo = False
    Resume CleanExit
End Function
Private Function IAuthService_Authenticate(ByVal model As UserAuthModel) As Boolean
    
    Dim info As TUserAuthInfo
    If Not model.IsValid Or Not GetUserAuthInfo(model.Name, outInfo:=info) Then Exit Function
    
    Dim pwdHash As String
    pwdHash = this.Algorithm.ComputeHash(info.Salt & model.Password)
    
    IAuthService_Authenticate = (pwdHash = info.Hash)
    
End Function

If we only look at the IAuthService_Authenticate implementation, we can easily tell what’s going on:

  • If for any reason we can’t identify the specified user / get its authentication info, we bail
  • Using the user’s Salt string, we use the hashing algorithm’s ComputeHash method to get a hash string for the specified password.
  • Authentication succeeds if the hashed salted password matches the stored hash string for that user.

Note how the provided model.Password string isn’t being copied anywhere, or compared against anything.

The GetUserAuthInfo function is being considered an implementation detail here, but could easily be promoted to its own IUserAuthInfoProvider interface+implementation: the role of that function is to get the Salt and PasswordHash values for a given user, and here we’re pulling that from a table on a worksheet, but other implementations could be pulling it from a database: this is a concern in its own right, and could very easily be argued to belong in its own class, abstracted behind its own interface.

IAuthView

If we’re going to have a dialog for the user to enter their credentials into, then everything we’ve seen about the Model-View-Presenter UI design pattern is applicable here – we already have our model, and now we need an abstraction for a view.

'@Folder("Authentication")
'@Interface
Option Explicit
'@Description("Shows the view as a modal dialog. Returns True unless the dialog is cancelled.")
Public Function ShowDialog() As Boolean
End Function
Public Property Get UserAuthModel() As UserAuthModel
End Property

From an abstract standpoint, the view is nothing more than a function that displays the dialog and returns False if the dialog was cancelled, True otherwise.

The concrete implementation will be a UserForm that includes two textboxes, two command buttons, and a few labels – like this:

The code-behind for the form is very simple:

  • Change handlers for the textboxes assign the corresponding model property
  • Click handlers for the command buttons simply Hide the form
  • A Create factory method takes a UserAuthModel object reference
  • Model is exposed for property injection (only the factory method uses this property)
'@Folder("Authentication")
'@PredeclaredId
Option Explicit
Implements IAuthView
Private Type TAuthDialog
    UserAuthModel As UserAuthModel
    IsCancelled As Boolean
End Type
Private this As TAuthDialog
Public Function Create(ByVal model As UserAuthModel) As IAuthView
    If model Is Nothing Then Err.Raise 5, TypeName(Me), "Model cannot be a null reference"
    Dim result As AuthDialogView
    Set result = New AuthDialogView
    Set result.UserAuthModel = model
    Set Create = result
End Function
Public Property Get UserAuthModel() As UserAuthModel
    Set UserAuthModel = this.UserAuthModel
End Property
Public Property Set UserAuthModel(ByVal value As UserAuthModel)
    Set this.UserAuthModel = value
End Property
Private Sub OnCancel()
    this.IsCancelled = True
    Me.Hide
End Sub
Private Sub Validate()
    OkButton.Enabled = this.UserAuthModel.IsValid
End Sub
Private Sub CancelButton_Click()
    OnCancel
End Sub
Private Sub OkButton_Click()
    Me.Hide
End Sub
Private Sub NameBox_Change()
    this.UserAuthModel.Name = NameBox.Text
    Validate
End Sub
Private Sub PasswordBox_Change()
    this.UserAuthModel.Password = PasswordBox.Text
    Validate
End Sub
Private Sub UserForm_QueryClose(Cancel As Integer, CloseMode As Integer)
    If CloseMode = VbQueryClose.vbFormControlMenu Then
        Cancel = True
        OnCancel
    End If
End Sub
Private Function IAuthView_ShowDialog() As Boolean
    Me.Show vbModal
    IAuthView_ShowDialog = Not this.IsCancelled
End Function
Private Property Get IAuthView_UserAuthModel() As UserAuthModel
    Set IAuthView_UserAuthModel = this.UserAuthModel
End Property

The important thing to note, is that the form itself doesn’t do anything: it’s just an I/O device your code uses to interface with the user – nothing more, nothing less. It collects user-provided data into a model, and ensures the dialog validates that model.

The form knows about the UserAuthModel and its properties (Name, Password, IsValid), and nothing else. It doesn’t know how to get a list of user names to populate a dropdown so that the user can pick a name from a list (that could be done, but then the model would need a UserNames property). It doesn’t know how to verify whether the provided password string is correct. It’s …just not its job to do anything other than relay messages to & from the user.

IAuthPresenter

We have a UserAuthModel that holds the user-supplied credentials. We have a WorksheetAuthService that can take these credentials and tell us if they’re good, using any IHashAlgorithm implementation. We’re missing an object that pieces it all together, and that’s the job of a presenter.

What we want is for the code that needs an authenticated user, to be able to consume a simple interface, like this:

'@Folder("Authentication")
'@ModuleDescription("Represents an object that can authenticate the current user.")
'@Interface
Option Explicit
'@Description("True if user is authenticated")
Public Property Get IsAuthenticated() As Boolean
End Property
'@Description("Prompts for user credentials")
Public Sub Authenticate()
End Sub

Now, any class that encapsulates functionality that involves authenticating the current user can be injected with an IAuthPresenter interface, and when IsAuthenticated is True we know our user is who they say they are. And if we inject the same instance everywhere, then the user only needs to enter their credentials once for the authentication state to be propagated everywhere – without using any globals!

'@Folder("Authentication")
'@PredeclaredId
'@ModuleDescription("Represents an object responsible for authenticating the current user.")
Option Explicit
Implements IAuthPresenter
Private Type TPresenter
    View As IAuthView
    AuthService As IAuthService
    IsAuthenticated As Boolean
End Type
Private this As TPresenter
Public Function Create(ByVal service As IAuthService, ByVal dialogView As IAuthView) As IAuthPresenter
    Dim result As AuthPresenter
    Set result = New AuthPresenter
    Set result.AuthService = service
    Set result.View = dialogView
    Set Create = result
End Function
Public Property Get AuthService() As IAuthService
    Set AuthService = this.AuthService
End Property
Public Property Set AuthService(ByVal value As IAuthService)
    Set this.AuthService = value
End Property
Public Property Get View() As IAuthView
    Set View = this.View
End Property
Public Property Set View(ByVal value As IAuthView)
    Set this.View = value
End Property
Private Sub IAuthPresenter_Authenticate()
    If Not this.View.ShowDialog Then Exit Sub
    this.IsAuthenticated = this.AuthService.Authenticate(this.View.UserAuthModel)
End Sub
Private Property Get IAuthPresenter_IsAuthenticated() As Boolean
    IAuthPresenter_IsAuthenticated = this.IsAuthenticated
End Property

At this point any standard module macro (aka entry point) can create the presenter and its dependencies:

Public Sub DoSomething()
    
    Dim model As UserAuthModel
    Set model = New UserAuthModel
    
    Dim dialog As IAuthView
    Set dialog = AuthDialogView.Create(model)
    
    Dim algo As IHashAlgorithm
    Set algo = SHA256Managed.Create()
    
    Dim service As IAuthService
    Set service = WorksheetAuthService.Create(algo)
    
    Dim presenter As IAuthPresenter
    Set presenter = AuthPresenter.Create(service, dialog)
    
    presenter.Authenticate
    If presenter.IsAuthenticated Then
        MsgBox "Welcome!", vbInformation
    Else
        MsgBox "Access denied", vbExclamation
    End If
    
End Sub 

If this were real application code, instead of consuming the presenter it would be injecting it into some class instance, and invoking a method on that class. This composition root (where we compose the application / instantiate and inject all the dependencies) would probably be in the Workbook_Open handler, so that the authentication state can be shared between components.


Authorisation

Up to this point, we only cared for authentication, i.e. identifying the current user. While very useful, it doesn’t tell us who’s authorized to do what. Without some pretty ugly code that special-cases specific users (e.g. “Admin”), we’re pretty limited here.

One proven solution, is to use role-based authorisations. Users belong to a “group” of users, and it’s the “group” of users that’s authorized to do things, not users themselves.

In order to do this, the WorksheetAuthService implementation needs to be modified to add a RoleId member to the TUserAuthInfo, and the IAuthService.Authenticate method could return a Long instead of a Boolean, where 0 would still mean a failed authentication, but any non-zero value would be the authenticated user’s RoleId.

Roles could be defined by an enum (note the default / 0 value):

Public Enum AuthRole
    Unauthorized = 0
    Admin
    Maintenance
    Auditing
End Enum

Or, role membership could be controlled in Active Directory (AD), using security groups – in that case you’ll want your IAuthService implementation to query AD instead of a worksheet, and the IAuthPresenter implementation to hold the current user’s role ID along with its authentication status.


There are many ways to go about implementing authentication, and many implementation-specific concerns. For example, if you’re querying a database for this, you’ll want to use commands and proper parameterization to avoid the problems associated with SQL Injection vulnerabilities: maybe a user named Robert');DROP TABLE USERS;-- isn’t part of your threat model, but can Tom O'Neil log onto your system without breaking anything?

Regardless of the approach, if you’re comparing the user’s plain-text password input with the plain-text password stored in $(storage_medium), you’re doing it wrong – whether that’s in VBA or not.

Rubberduck Annotations

I wrote about this unfortunately hard-to-discover feature in 2017, but a lot has happened since then, and there’s 5 times more of you now! The wiki is essentially up-to-date, but I’m not sure of its viewership. So here’s a recap of annotations in the late Rubberduck 2.4.1.x pre-release builds, that 2.5.0.x will launch with.

What we call “annotations” are special comments that look like these:

'@Folder("MyProject.Abstract")
'@ModuleDescription("An interface that describes an object responsible for something.")
'@Interface
'@Exposed

'@Description("Does something")
Public Sub DoSomething()
End Sub

Syntax

Rubberduck’s parser includes a grammar rule that captures these special comments, such that we “see” them like any other language syntax element (tokens), and can analyze them as such, too.

The syntax is rather simple, and is made to look like a procedure call – note that string arguments must be surrounded with double quotes:

'@AnnotationName arg1, arg2, "string argument"

If desired, parentheses can be used, too:

'@AnnotationName(arg1, arg2)
'@AnnotationName("string argument")

Whether you use one notation or the other is entirely up to personal preference, both are completely equivalent. As with everything else, consistency should be what matters.

There’s an inspection that flags illegal/unsupported annotations that you, if you’re using this @PseudoSyntax for other purposes, will probably want to disable: that’s done by setting its severity level to DoNotShow in the inspection settings, or by simply clicking “disable this inspection” from the inspection results toolwindow.

Keep in mind that while they are syntactically comments as far as VBA is concerned, to Rubberduck parsing the argument list of an annotation needs to follow strict rules. This parses correctly:

'@Folder "Some.Sub.Folder" @ModuleDescription "Some description" : some comment

Without the : instruction separator token, the @ModuleDescription annotation parses as a regular comment. After : though, anything goes.

There are two distinct types of annotation comments: some annotations are only valid at module level, and others are only valid at member level.

Module Annotations

Module-level annotations apply to the entire module, and must appear in that module’s declarations section. Personally, I like having them at the very top, above Option Explicit. Note that if there’s no declaration under the last annotation, and no empty line, then the placement becomes visually ambiguous – even though Rubberduck correctly understands it, avoid this:

Option Explicit
'@Description("description here")
Public Sub DoSomething() '^^^ is this the module's or the procedure's annotation?
End Sub

Let it breathe – always have an empty line between the end of the module’s declarations section (there should always at least be Option Explicit there) and the module’s body:

Option Explicit
'@Folder("MyProject") : clearly belongs to the module

'@Description("description here")
Public Sub DoSomething() '^^^ clearly belongs to the procedure
End Sub

What follows is a list of every single module-level annotation currently supported (late v2.4.1.x pre-release builds), that v2.5.0 will launch with.

@Folder

The Visual Basic Editor regroups modules in its Project Explorer toolwindow, by component type: you get a folder for your “Modules”, another folder for your “Class Modules”; if you have userforms they’re all under a “Forms” folder, and then the document modules are all lumped under some “Microsoft Excel Objects” folder (in an Excel host, anyway). While this grouping is certainly fine for tiny little automation scripts, it makes navigation wildly annoying as soon as a project starts having multiple features and responsibilities.

In a modern IDE like Visual Studio, code files can be regrouped by functionality into a completely custom folder hierarchy: you get to have a form in the same folder as the presenter class that uses it, for example. With Rubberduck’s Code Explorer toolwindow, you get to do exactly the same, and the way you do this is with @Folder annotations.

'@Folder("Root.Parent.Child")
Option Explicit

The @Folder annotation takes a single string argument representing the “virtual folder” a module should appear under, where a dot (.) denotes a sub-folder – a bit like .NET namespaces. Somewhere deep in the history of this annotation, there’s a version that’s even named @Namespace. “Folder” was preferred though, because “Namespace” was deemed too misleading for VBA/VB6, given the language doesn’t support them: all module names under a given project must still be unique. The Code Explorer toolwindow uses these annotations to build the folder hierarchy to organize module nodes under, but the folders don’t actually exist: they’re just a representation of the annotation comments in existing modules – and that is why there is no way to create a new, empty folder to drag-and-drop modules into.

It is strongly recommended to adopt a standard and consistent PascalCase naming convention for folder names: future Rubberduck versions might very well support exporting modules accordingly with these folder annotations, so these “virtual folders” might not be “virtual” forever; by using a PascalCase naming convention, you not only adopt a style that can be seamlessly carried into the .NET world; you also make your folders future-proof. Avoid spaces and special characters that wouldn’t be legal in a folder name under Windows.

The ModuleWithoutFolder inspection (under “Rubberduck Opportunities”), if enabled, will warn you of modules where this annotation is absent. By default, Rubberduck’s Code Explorer will put all modules under a single root folder named after the VBA project. While this might seem rather underwhelming, it was a deliberate decision to specifically not re-create the “by component type” grouping of the VBE and encourage our users to instead regroup modules by functionality.

@IgnoreModule

The @IgnoreModule annotation is automatically added by the “Ignore in Module” inspection quick-fix, which effectively disables a specific code inspection, but only in a specific module. This can be useful for inspections that have false positives, such as procedure not used firing results in a module that contains public parameterless procedures that are invoked from ActiveX controls on a worksheet, which Rubberduck isn’t seeing (hence the false positives), but that are otherwise useful, such that you don’t necessarily want to completely disable the inspection (i.e. set its severity level to DoNotShow).

If no arguments are specified, this annotation will make all inspections skip the module. To skip a specific inspection, you may provide its name (minus the Inspection suffix) as an argument. To ignore multiple inspections, you can separate them with commas like you would any other argument list:

'@IgnoreModule ProcedureNotUsed, ParameterNotUsed

Alternatively, this annotation may be supplied multiple times:

'@IgnoreModule ProcedureNotUsed
'@IgnoreModule ParameterNotUsed

Use the : instruction separator to terminate the argument list and add an explanatory comment as needed:

'@IgnoreModule ProcedureNotUsed : These are public macros attached to shapes on Sheet1

Note that the arguments (inspection names) are not strings: enclosing the inspection names in string literals will not work.

@TestModule

This was the very first annotation supported by Rubberduck. This annotation is only legal in standard/procedural modules, and marks a module for test discovery: the unit testing engine will only scan these modules for unit tests. This annotation does not support any parameters.

@ModuleDescription(“value”)

Given a string value, this annotation can be used to control the value of the module’s hidden VB_Description attribute, which determines the module’s “docstring” – a short description that appears in the VBE’s Object Browser, and that Rubberduck displays in its toolbar and in the Code Explorer.

Because Rubberduck can’t alter module attributes in document modules, this annotation is illegal in modules representing objects owned by the host application (i.e. “document” modules), such as Worksheet modules and ThisWorkbook.

@PredeclaredId

This annotation does not support any parameters, and can be used to control the value of the hidden VB_PredeclaredId attribute, which determines whether a class has a default instance. When a class has a default instance, its members can be invoked without an instance variable (rather, using an implicit one named after the class itself), like you did every single time you’ve ever written UserForm1.Show – but now you get to have a default instance for your own classes, and this opens up a vast array of new possibilities, most notably the ability to now write factory methods in the same class module as the class being factory-created, effectively giving you the ability to initialize new object instances with parameters, just like you would if VBA classes had parameterized constructors:

Dim something As Class1
Set something = Class1.Create("test", 42)

@Exposed

VBA classes are private by default: this means if you make a VBA project that references another, then you can’t access that class from the referencing project. By setting the class’ instancing property to PublicNotCreatable, a referencing project is now able to consume the class (but the class can only be instantiated inside the project that defines it… and that’s where factory methods shine).

This annotation visibly documents that the class’ instancing property has a non-default value (this can easily be modified in the VBE’s properties toolwindow).

@Interface

In VBA every class modules defines a public interface: every class can Implements any other class, but not all classes are created equal, and in the vast majority of the time what you want to follow the Implements keyword will be the name of an abstract interface. An abstract interface might look like this:

'@Interface
Option Explicit

Public Sub DoSomething()
End Sub

Adding this annotation to a module serves as metadata that Rubberduck uses when analyzing the code: the Code Explorer will display these modules with a dedicated “interface” icon, and an inspection will be able to flag procedures with a concrete implementation in these modules.

@NoIndent

Rubberduck’s Smart Indenter port can indent your entire VBA project in a few milliseconds, but automatically indenting a module can have undesirable consequences, such as losing hidden member attributes. Use this annotation to avoid accidentally wiping hidden attributes in a module: the indenter will skip that module when bulk-indenting the project.


Member Annotations

Member-level annotations apply to the entire procedure they’re annotating, and must be located immediately over the procedure’s declaration:

'@Description("Does something")
Public Sub DoSomething()
    '...
End Sub

As with module annotations, multiple member annotations can be specified for the same procedure – either by stacking them, or enumerating them one after the other:

'@DefaultMember
'@Description("Gets the item at the specified index")
Public Property Get Item(ByVal index As Long) As Object
    '...
End Property

Member annotations that aren’t immediately above the procedure declaration, will be flagged as illegal by the IllegalAnnotation inspection:

'@Description("Does something") : <~ annotation is illegal/misplaced

Public Sub DoSomething()
    '...
End Sub

@Description

This very useful annotation controls the value of the member’s hidden VB_Description attribute, which defines a docstring that appears in the bottom panel of the Object Browser when the member is selected – Rubberduck also displays this content in the context-sensitive (selection-dependent) label in the Rubberduck VBIDE toolbar.

Toolbar label content is dependent on the current selection in the editor and includes the value of the hidden attribute’s value.

@Ignore

Similar to @IgnoreModule, the purpose of the member-level @Ignore annotation is to get specific inspections to ignore the annotated procedure: it works identically.

@DefaultMember

Only one single member of a class can be the class’ default member. Default members should generally be avoided, but they are very useful for indexed Item properties of custom collection classes. This annotation takes no arguments.

@Enumerator

Custom collections that need to support For Each enumeration are required to have a member that returns an IUnknown, and hidden flags and attributes: this annotation clearly identifies the special member, and gets the hidden flags and attributes right every time.

'@Enumerator
Public Property Get NewEnum() As IUnknown
    Set NewEnum = encapsulatedCollection.[_NewEnum]
End Property

@ExcelHotkey

This rather specific annotation works in Excel-hosted VBA projects (as of this writing its absence may cause inspection false positives in other host applications, like Microsoft Word).

When the VBA project is hosted in Microsoft Excel, you can use this annotation to assign hotkeys using the same mechanism Excel uses to map hotkeys to recorded macros.

'@ExcelHotkey "D" : Ctrl+Shift+D will invoke this procedure in Excel
Public Sub DoSomething()
    '...
End Sub

'@ExcelHotkey "d" : Ctrl+D will invoke this procedure in Excel
Public Sub DoSomethingElse()
    '...
End Sub

Note that the annotation will work regardless of whether the argument is treated as a string literal or not – only the first character of the annotation argument is used, and its case determines whether the Shift key is involved in the hotkey combination (all hotkeys involve the Ctrl key): use an uppercase letter for a Ctrl+Shift hotkey.

@Obsolete

Code under continued maintenance is constantly evolving, and sometimes in order to avoid breaking existing call sites, a procedure might need to be replaced by a newer version, while keeping the old one around: this annotation can be used to mark the old version as obsolete with an explanatory comment, and inspections can flag all uses of the obsolete procedure:

'@Obsolete("Use DoSomethingElse instead.")
Public Sub DoSomething()
    '...
End Sub

Public Sub DoSomethingElse()
    '...
End Sub
The argument string appears in the inspection results for each use of the obsolete member.

Test Method Annotations

These annotations have been in Rubberduck for a very long time, and they are actually pretty easy to discover since they are automatically added by Rubberduck when adding test modules and test methods using the UI commands – but since Test Settings can be configured to not include setup & teardown stubs, it can be easy to forget they exist and what they do.

@TestMethod

This annotation is used in test modules to identify test methods: every test must be marked with this annotation in order to be discoverable as a test method. It is automatically added by Rubberduck’s “add test method” commands, but needs to be added manually if a test method is typed manually in the editor rather than inserted by Rubberduck.

This annotation supports a string argument that determines the test’s category, which appears in the Test Explorer toolwindow and enables grouping by category. If no category argument is specified, “Uncategorized” is used as a default:

@TestMethod("Some Category")
Private Sub TestMethod1()
'...
End Sub

The other @TestXxxxx member annotations are used for setup & teardown. If test settings have the “Test module initialization/cleanup” option selected, then @ModuleInitialize and @ModuleCleanup procedure stubs are automatically added to a new test module. If test settings have “Test method initialization/cleanup” selected, then @TestInitialize and @TestCleanup procedure stubs are automatically added a new test modules.

@TestInitialize

In test modules, this annotation marks procedures that are invoked before every single test in the module. Use that method to run setup/initialization code that needs to execute before each test. Each annotated procedure is invoked, but the order of invocation cannot be guaranteed… however there shouldn’t be a need to have more than one single such initialization method in the module.

@TestCleanup

Also used in test modules, this annotation marks methods that are invoked after every single test in that test module. Use these methods to run teardown/cleanup code that needs to run after each test. Again, each annotated procedure is invoked, but the order of invocation cannot be guaranteed – and there shouldn’t be a need to have more than one single such cleanup method in the module.

@ModuleInitialize

Similar to @TestInitialize, but for marking procedures that are invoked once for the test module, before the tests start running. Use these procedures to run setup code that needs to run before the module’s tests begin to run; each annotated procedure will be invoked, but the order of invocation cannot be guaranteed. Again, only one such initialization procedure should be needed, if any.

@ModuleCleanup

Similar to @TestCleanup, but for marking procedures that are invoked once for the test module, after all tests in the module have executed. Use these procedures to run teardown/cleanup code that needs to run after all module’s tests have completed; each annotated procedure will be invoked, but the order of invocation isn’t guaranteed. Only one such cleanup procedure should be needed, if any.


Annotations are one of Rubberduck’s most useful but unfortunately also one of its most obscure and hard-to-discover features. Fortunately, we have plans to surface them as right-click context menu commands in the 2.5.x release cycle.

Document Modules

The first time you discovered the Visual Basic Editor and visualized the VBA project in the Project Explorer, when you first met ThisWorkbook and Sheet1, document modules were the world: your baby steps in VBA were very likely in the code-behind of ThisWorkbook or Sheet1 – document modules are the gateway to VBA-land.

In the VBIDE Extensibility object model, the modules are accessed via the VBComponents property of a VBProject object, and the VBComponent.Type property has a value of vbext_ComponentType.vbext_ct_Document (an enum member value) for both ThisWorkbook and Sheet1 modules, but would be vbext_ct_StdModule for a standard module like Module1. Clearly if document modules are class modules, there’s enough “special” about them that they need to be treated differently by the VBA compiler.

Document?

VBA itself is host-agnostic: whether it’s hosted in Excel, PowerPoint, AutoCAD, Sage, Corel Draw, or any other one of over 200 licensed hosts, it’s the same VBA (there’s no such thing as “Excel VBA”, really), and it doesn’t have any intrinsic knowledge of what an Excel.Worksheet is – only the Excel library does; when your VBA project is hosted in Excel, then the Excel type library is automatically added to (and locked; you can’t remove it from) your project. Document modules are a special kind of module that the VBIDE treats as part of the VBA project, but it can’t add or remove them: If you want to add or remove a Worksheet module from a VBA project, you need to actually add or remove a worksheet from the host Excel workbook.

So, other than we can’t directly add such components to a VBA project without involving the host application’s object model, what’s special about them?

They’re in the VBA project, because the host application decided that’s what’s in a VBA project hosted in – here Excel, but each host application gets to decide whether a project includes a module to represent the host document, and under what circumstances to add or remove other types of modules, like Worksheet, or Chart.

Document modules can’t be instantiated or destroyed, so there’s no Initialize or Terminate event handler for them. However, you get to create a handler for any or every one of many convenient events that the host application fires at various times and that the authors of the object model deemed relevant to expose as programmatic extensibility points. For ThisWorkbook, this includes events like Workbook.Open and Workbook.NewSheet, for example. For Worksheet modules, that’s worksheet-specific events like Worksheet.SelectionChange or Worksheet.Change, that you can use to “hook” custom code when such or such thing happens in the host document.

ThisWorkbook

Your VBA project is hosted inside an Excel document. In the VBA project, the host document is referred to with an identifier, and that identifier is (by default anyway, and renaming it is not something I’d recommend doing) ThisWorkbook.

The Excel workbook that contains the current VBA project: that’s ThisWorkbook. When you’re in the code-behind of that module, you’re extending a Workbook object: if you type Me., the VBE’s IntelliSense/autocomplete list will display all the public members you’d find on any other Workbook object, plus any Public (explicitly or not) member. That’s what’s special about a document module: it literally inherits members from another class, as in inheritance – something VBA user code cannot do. Isn’t it fascinating that, under the hood, Visual Basic for Applications apparently has no problem with class inheritance? Something similar happens with UserForm code: the UserForm1 class inherits the members of any other UserForm, “for free”. And of course every Sheet1 inherits the members of every other Worksheet in the world.

So, procedures you write in a document module, should logically be very closely related to that particular document. And because host-agnostic logic can’t add/remove these modules, you’ll want to have as little code as possible in them – and then as a bonus, your VBA project becomes easier to keep under source control, because the code is in modules that VBE add-ins (wink wink) are able to properly import back in and synchronize to & from the file system.


What about ActiveWorkbook?

ActiveWorkbook refers to the one and only workbook that is currently active in the Excel Application instance, which may or may not be ThisWorkbook / the host document. It’s easy to confuse the two, and even easier to write code that assumes one is the other: the macro recorder does it, many documentation examples and Stack Overflow answers do it too. But reliable code is code that makes as few assumptions as possible – sooner or later, built-in assumptions are broken, and you’re faced with an apparently intermittent error 1004 that sometimes happens when you’re debugging and stepping through the code, and it happened to a user once or twice but the problem always seemed to vaporize just because you showed up at the user’s cubicle and stood there watching as nothing blew up and everything went fine. *Shrug*, right?


Accessing Worksheets

You shouldn’t be dereferencing worksheets all the time. In fact, you rarely even need to. But when you do, it’s important to do it right, and for the right reasons. The first thing you need to think of, is whether the sheet exists in ThisWorkbook at compile-time. Meaning, it’s there in the host document, you can modify it in Excel and there’s a document module for it in the VBA project.

That’s the first thing you need to think about, because if the answer to that is “yep, it’s right there and it’s called Sheet3“, then you already have your Worksheet object and there’s no need to dereference it from any Sheets or Worksheets collection!

Dim sheet As Worksheet
Set sheet = ThisWorkbook.Worksheets("Sheet1") '<~ bad if Sheet1 exists at compile-time!

Set sheet = Sheet1 '<~ bad because redundant: the variable obfuscates the target!
sheet.Range("A1").Value = 42 '<~ bad if sheet is a local variable, but good if a parameter

Sheet1.Range("A1").Value = 42 '<~ most reliable way to refer to a worksheet

The magic Sheet1 identifier comes from the (Name) property of the Sheet1 document module under ThisWorkbook in the VBA project: set that property to a valid and meaningful name for that specific worksheet, and you have a user-proof way to refer to your ConfigurationSheet, the SummarySheet, and that DataSheet. If the user decides to rename the DataSheet to “Data (OLD)” for some reason, this code is now broken:

ThisWorkbook.Worksheets("Data").Range("A1").Value = 42

Meanwhile this code will survive any user-induced sheet-name tampering:

DataSheet.Range("A1").Value = 42

Wait, is it .Sheets() or .Worksheets()?

The first thing to note, is that they aren’t language-level keywords, but member calls. If you don’t qualify them, then in the ThisWorkbook module you’ll be referring to Me.Worksheets (i.e. ThisWorkbook.Worksheets), and anywhere else in the VBA project that same code be implicitly referring to ActiveWorkbook.Worksheets: that’s why it’s important to properly qualify member calls. Worksheets is a member of a Workbook object, so you explicitly qualify it with a Workbook object.

Now, Sheets and Worksheets both return an Excel.Sheets collection object, whose default member Item returns an Object. Both are happy to take a string with a sheet name, or an integer with a sheet index. Both will be unhappy (enough to raise runtime error 9 “subscript out of range”) with an argument that refers to a sheet that’s not in the (implicitly or not) qualifying workbook object. Both will return a Sheets collection object if you give it an array of sheet names: that’s one reason why the Item member returns an Object and not a Worksheet. Another reason is that sometimes a sheet is a Chart, not a Worksheet.

Use the Worksheets collection to retrieve Worksheet items; the Sheets collection contains all sheets in the qualifying workbook, regardless of the type, so use it e.g. to retrieve the Chart object for a chart sheet. Both are equivalent, but Worksheets is semantically more specific and should be preferred over Sheets for the common Worksheet-dereferencing scenarios.


Dereferencing Workbooks

If you only need to work with ThisWorkbook, then you don’t need to worry about any of this. But as soon as your code starts opening other workbooks and manipulating sheets that are in these other workbooks, you need to either go nuts over what workbook is currently the ActiveWorkbook as you Activate workbooks and repeatedly go Workbooks("foo.xlsm").Activate…. or properly keep a reference to the objects you’re dealing with.

When you open another workbook with Application.Workbooks.Open, that Open is a function, a member of the Excel.Workbooks class that returns a Workbook object reference if it successfully opens the file.

Workbooks.Open is also side-effecting: successfully opening a workbook makes that workbook the new ActiveWorkbook, and so global state is affected by its execution.

When you then go and work off ActiveWorkbook or unqualified Worksheets(...) member calls, you are writing code that is heavily reliant on the side effects of a function, and global state in general.

The right thing to do, is to capture the function’s return value, and store the object reference in a local variable:

Dim book As Workbook
Set book = Application.Workbooks.Open(path) '<~ global-scope side effects are irrelevant!

Dim dataSheet As Worksheet
Set dataSheet = book.Worksheets("DATA")

If a workbook was opened by your VBA code, then your VBA code has no reason to not have a Workbook reference to that object.

So when is ActiveWorkbook useful then?

As an argument to a procedure that takes a Workbook parameter because it doesn’t care what workbook it’s working with, or when you need to assign a Workbook object variable (presumably a WithEvents module-scope private variable in some class module) to whatever workbook is currently active. With few specific exceptions, that’s all.

ActiveWorkbook.Whatever is just not code that you normally want to see anywhere.


Cha-cha-cha-Chaining Calls

Strive to keep the VBA compiler aware of everything that’s going on. Moreover if all the code you write is early-bound, then Rubberduck understands it as completely as it can. But implicit late binding is alas too easy to introduce, and the primary cause for it is chained member calls:

book.Worksheets("Sheet1").Range("A1").Value = 42 '<~ late bound at .Range

Everything after the Worksheets("Sheet1") call is late-bound, because as described above, Excel.Sheets.Item returns an Object, and member calls against Object can only ever be resolved at run-time.

By introducing a Worksheet variable to collect the Object, we cast it to a usable compile-time interface (that’s Worksheet), and now the VBA compiler can resume validating the .Range member call:

Dim sheet As Worksheet
Set sheet = book.Worksheets("Sheet1")
sheet.Range("A1").Value = 42 '<~ all early bound

Chained early-bound member calls are fine: the compiler will be able to validate the Range.Value member call, because the Excel.Worksheet.Range property getter returns a Range reference. If it returned Object, we would have to declare a Range local variable to capture the Excel.Range object we want to work with, like this:

Dim sheet As Worksheet
Set sheet = book.Worksheets("Sheet1") '<~ good: casts Object into Worksheet.

Dim cell As Range
Set cell = sheet.Range("A1") '<~ redundant: sheet.Range("A1") returns an early-bound Range.
cell.Value = 42 '<~ early-bound, but sheet.Range("A1").Value = 42 would also be early-bound.

Avoid declaring extraneous variables, but never hesitate to use a local variable to turn an Object into a compile-time type that gives you IntelliSense, autocompletion, and parameter quick-info: you’ll avoid accidentally running into run-time error 438 for typos Option Explicit can’t save you from. Using the compiler to validate everything it can validate, is a very good idea.

If you need to repeatedly invoke members off an early-bound object, introducing a local variable reduces the dereferencing and helps make the code feel less repetitive:

sheet.Range("A1").Value = "Rubberduck"
sheet.Range("A1").Font.Bold = True
sheet.Range("A1").Font.Size = 72
sheet.Range("A1").Font.Name = "Showcard Gothic"

By introducing a local variable, we reduce the cognitive load and no longer repeatedly dereference the same identical Range object pointer every time:

Dim cell As Range
Set cell = sheet.Range("A1")

cell.Value = "Rubberduck"
cell.Font.Bold = True
cell.Font.Size = 72
cell.Font.Name = "Showcard Gothic"

Arguably, nested With blocks could hold all the object references involved, and reduces the dereferencing to a strict minimum (.Font is only invoked once, and the reference is witheld), but it’s very debatable whether it enhances or hurts readability:

With sheet.Range("A1")
    .Value = "Rubberduck"
    With .Font
        .Bold = True
        .Size = 72
        .Name = "Showcard Gothic"
    End With
End With

Avoiding nested With blocks seems a fair compromise:

Dim cell As Range
Set cell = sheet.Range("A1")

cell.Value = "Rubberduck"
With cell.Font
    .Bold = True
    .Size = 72
    .Name = "Showcard Gothic"
End With

All this is fairly subjective, of course, and really applies to everything you ever write in VBA (not just when coding against the Excel object model), but any of it is better than this (very cleaned-up) macro-recorder code:

    Range("A1").Select
    ActiveCell.Value = "Rubberduck"
    With Selection.Font
        .Name = "Showcard Gothic"
        .Bold = True
        .Size = 72
    End With

We note the implicit ActiveSheet reference with the implicitly-qualified Range member call; we note the use of Range.Select followed by a use of ActiveCell; we note a With block holding a late-bound reference to Range.Font through the Selection object, and the compiler gets to validate absolutely nothing inside that With block.

The macro recorder doesn’t declare local variables: instead, it Selects things and then works late-bound against the Selection. That’s why it’s a bad teacher: while it’s very useful to show us what members to use to accomplish something, it does everything without leveraging any compile-time checks, and teaches to Activate the sheet you want to work with so that your unqualified Range and Cells member calls can work off the correct sheet… but now you know why, how, and when to dereference a Worksheet object into a local variable, you don’t need any Select and Activate!

Dependency Injection + Inversion of Control + VBA

Whether VBA can do serious OOP isn’t a question – it absolutely can: none of the SOLID principles have implications that disqualify VBA as a language, and this means we can implement dependency injection and inversion of control. This article will go over the general principles, and then subsequent articles will dive into various dependency injection techniques you can use in VBA code.

A quick summary of these fundamental guidelines, before we peek at DI and IoC:

SOLID

Single Responsibility Principle

Split things up, and then some. Write loop bodies in another procedure, extract if/else blocks into other small specialized procedures. Do as little as possible, aim for each procedure to have a well-defined single responsibility.

Open/Closed Principle

Designing classes that are “open for extension, but closed for modification” is much easier said than done, but definitely worth striving for; by adhering to the other SOLID principles, this one just naturally falls into place. In a nutshell, you’ll want to be able to add features by extending a class rather than modifying it (and risk breaking something) – the only code you need to think about is the code for the new feature… and how you’re going to be testing it.

Liskov Substitution Principle

Say you write a procedure that takes an IFooRepository parameter. Whether you invoke it with some SqlFooRepository, MySqlFooRepository, or FakeFooRepository, should make no difference whatsoever: each implementation fulfills the interface’s contract, each implementation could be swapped for another without altering the logic of the procedure.

Interface Segregation Principle

Write small, specialized interface with a clear purpose, that won’t likely need to grow new members in the future: IFooRepository.GetById is probably fine, but IFooRepository.GetByName looks like someone had a specific or particular implementation in mind when they designed the interface, and now you need to implement a GetByName method for a repository where that makes no sense.

Dependency Inversion Principle

Depend on abstractions, not concrete implementations – your code has dependencies, and you want them abstracted away behind interfaces that you receive as parameters.


What is a dependency?

You’re writing a procedure, and you need to invoke a method that belongs to another object or module – say, MsgBox: with it your procedure can warn the user of an error, or easily get a yes/no answer. But this ability comes with a cost: now there’s no way to invoke that procedure without popping a message box and stopping execution until it’s dismissed. Hard-wired dependencies make unit testing difficult (if not impossible), so we inject them instead, as abstractions.

And dependency injection?

MsgBox is a bad example – Rubberduck’s FakesProvider already lets you configure MsgBox calls any way your testing requires, and no pop-up ..pops up. But let’s say the procedure needs to do things to a Worksheet.

We could make the procedure take a Worksheet parameter, and that would be method injection.

Since we’re in a class module (right?), we could have a Property Set member that takes a Worksheet value argument and assigns it to a Worksheet instance field that our method can work with, and that would be property injection.

We could have a factory method on our class’ default instance, that receives a Worksheet argument and property-injects it to a New instance of the class, then returns an instance of the class that’s ready to use (behind an interface that doesn’t expose any Property Set accessor for the injected dependencies), and that would be as close to the ideal constructor injection as you could get in a language without constructors.

What “control” is inverted, and why?

When a method News up all its dependencies, it’s a control freak that doesn’t let the outside world know anything about what objects it needs to do its job: it’s a black box that other code needs to take as “it just works”, and we can’t do much to alter how it works.

With inversion of control (IoC), you give up that control and let something else New things up for you, and that’s why Dependency Injection (DI) goes hand-in-hand with it. IoC implies completely reversing the dependency graph. Take a UserForm that reads from / writes to a worksheet, with code-behind that implements every little bit of what needs to happen in CommandButton1_Click handlers – a “Smart UI” – reversing the dependency graph means the form’s code-behind is now only concerned about the data it needs to present to the user, and the data it needs to collect from the user; the CommandButton1 button was renamed to AcceptButton, and its Click handler does one single thing: it invokes a SaveChangesCommand object’s Execute method, and everything that was in that click handler is now in that ICommand implementation. The command knows nothing of any userform; it works with the model, that it receives in an Object parameter to its Execute method.

It all comes down to one thing: testability. You want to test your commands and what they do, how they manipulate the model – so you pull as much as possible out of UI-dependent code and into specialized classes that only know as much as they need to know. The form’s code-behind (aka the view) knows about the model, the commands; the model knows about nothing but itself; the commands know about the model; a presenter would know about both the view and the model, but shouldn’t need to care for commands.

If none of the components create their dependencies / if all components have their dependencies injected, then if we follow the dependency chain we arrive to an entry point: in VB6 that would be some Public Sub Main(); in VBA, that could be any Public Sub procedure / “macro” in a standard module, or any Worksheet or Workbook event handler. These entry points all need to New up (or otherwise provide) everything in the dependency graph (e.g. class1 depends on class2 which depends on class3 and class4, …), and then invoke the desired functionality.

What is testable code?

Testable code is code for which you can fully control/inject all the dependencies of that code. This is where coding against abstractions pays off: you can leverage polymorphism and implement test doubles / stubs / fakes as needed. The presence of a New keyword in a method is a rather obvious indicator of a dependency; it’s the implicit dependencies that are harder to spot. These could be a MsgBox prompt, a UserForm dialog, but also Open, Close, Write, Kill, Name keywords, or maybe ActiveSheet, or ActiveWorkbook implicit member calls against a hidden global object; even the current Date can be a hidden dependency if it’s involved in behavior you want to cover with one or more unit tests. The Rnd function is definitely a dependency as well.

SOLID code is inherently testable code. If you write the tests first (Test-Driven Development / TDD), you could even conceivably end up with SOLID-compliant code out of necessity.

Say you want to bring up a dialog that collects some inputs, and one of these inputs needs to be a decimal value greater than or equal to 0 but less than 1 – what are the odds that such validation logic ends up buried in some TextBox12_Change handler (and duplicated in 3 places) in the UserForm module if the problem is tackled from a testability standpoint? That’s right: exactly none.

If the first thing you do is create a MyViewModelTests module with a MySpecialDecimal_InvalidIfGreaterThanOne test method, there’s a good chance your next move could be to add a MyViewModel class with a MySpecialDecimal property – be it only so that the test method can compile:

'@TestMethod("ValidationTests")
Public Sub MySpecialDecimal_InvalidIfGreaterThanOne()
    Dim sut As MyViewModel
    Set sut = New MyViewModel
    sut.MySpecialDecimal = 42
    Assert.IsFalse sut.IsValid
End Sub

So we need this MyViewModel.IsValid member now:

Public Property Get IsValid() As Boolean
End Property

At this point we can run the test in Rubberduck’s Test Explorer, and see it fail. Never trust a test you’ve never seen fail! The next step is to write just enough code to make the test pass:

Public Property Get IsValid() As Boolean
    IsValid = MySpecialDecimal < 1
End Property

This prompts us to write another test that we know would fail:

'@TestMethod("ValidationTests")
Public Sub MySpecialDecimal_InvalidIfNegative()
    Dim sut As MyViewModel
    Set sut = New MyViewModel
    sut.MySpecialDecimal = -1
    Assert.IsFalse sut.IsValid
End Sub

So we tweak the code to make it pass:

Public Property Get IsValid() As Boolean
    IsValid = MySpecialDecimal >= 0 And MySpecialDecimal < 1
End Property

We then run the whole test suite, to validate that this change didn’t break any green test, which would mean a regression bug was introduced – and the red test is telling you exactly which input scenario broke.


In a vanilla VBE, OOP quickly gets out of hand, for any decently-sized project: wading through many class modules in the legacy editor, locating implementations of the interfaces you’re coding against – things that you would seamlessly deal with in a modern IDE, become excruciatingly painful when modules are all listed alphabetically under one single “classes” folder, and when Ctrl+F “Implements {name}” is the only thing that can help you locate interface implementations.

Rubberduck not only addresses the organization of your OOP project (with “@Folder” annotations that let you organize & regroup modules by functionality) and enhances navigation tooling (“find all implementations”, “find all references”, “find symbol”, etc.), it also provides a unit testing framework, so that testing your VBA code is done the same way it’s done in other languages and modern IDEs, with Assert expressions that make or break a green test.

But if you write unit tests for your object-oriented VBA code, you’ll quickly notice that when your tests need to inject a fake implementation of a dependency, a consequence is that you often end up with a lot of “test fake” classes whose sole purpose is to support unit testing. This is double-edged, because you need to be careful that you’re testing the right thing (i.e. the actual object/method under test) and not whether your test fake/stub is behaving correctly.

Rubberduck has well over 5K unit tests, and most of them would be very hard to implement without the ability to setup proper mocking. Using the popular Moq framework, we are able to create and configure these “test fakes” without actually writing a class that implements the interface we need to inject into the component we’re testing.

Soon, these capabilities will land in the VBA landscape, with Rubberduck’s unit testing tools wrapping up Moq to let VBA code do exactly that.

Modern VBA Best Practices: Default Members

Today I learned that VB.NET does in fact support Default properties. For years I was under the impression that dismissing the Set keyword meant default members couldn’t possibly exist in .NET, and I was wrong: dismissing the Set keyword meant that parameterless default members couldn’t exist in .NET, but VB.NET can still implicitly invoke a Public Property Get Item(index) default member, just like its VB6 ancestor.

Rewind to their inception, and default members/properties have all the looks of a language feature that’s considered a nice convenient way to type code faster (in 20/20 hindsight, that was at the cost of readability). That’s why and how Debug.Print Application can compile, run, and output Microsoft Excel in the debug pane; it’s why and how an ADODB.Connection object and its ConnectionString properties can be impossible to tell apart… as a convenience; how a Range “is” its value(s), a TextBox “is” its text, or an OptionButton “is” True or False.

These are the modern-day considerations for VB.NET default properties (emphasis mine, .NET-specifics removed):

Default properties can result in a small reduction in source code-characters, but they can make your code more difficult to read. If the calling code is not familiar with your class […], when it makes a reference to the class […] name it cannot be certain whether that reference accesses the class […] itself, or a default property. This can lead to compiler errors or subtle run-time logic errors. […]
Because of these disadvantages, you should consider not defining default properties. For code readability, you should also consider always referring to all properties explicitly, even default properties.

I cannot think of a single valid reason for any of these considerations to not be applicable to modern VBA, or even VB6 code. VB.NET removed the need for a disambiguating Set keyword by making a parameterless default member throw a compiler error. For contrast consider this code, and imagine the Set keyword doesn’t exist:

Dim things(9)
things(0) = New Thing

If the Thing class defines a parameterless default member, then who can tell what’s at index 0 of the things array? A Thing object reference? A SomethingElse object reference? The String representation of a Thing instance? 42?

Default members are hopefully not side-effecting magic invisible stardust code that is by definition invoked implicitly, by code that says one thing and does another, and requires looking up the documentation or the object browser definition of a type to remember what member we’re actually invoking – and even then, it can be obscured; the Excel type library is a prime example, with a hidden _Default property being the (drumroll) default property of the Range class, for example. Lastly, an implicit default member call is not 100% equivalent to an explicit one, and that tiny little difference can go as far as instantly crashing Excel.

Sounds terrible. Why would Rubberduck have a @DefaultMember annotation then?

With Rubberduck’s annotation and inspection/quick-fix system, you can easily define default members for your class modules; simply decorate the procedure with a '@DefaultMember annotation, synchronize member attributes, and done.

It’s not because you can, that you should. If you’re like me and someone gave you a knife, you’d probably at least try not to cut yourself. If you’re writing a custom collection class and you want it to be usable with the classic things(i) syntax rather than an explicit things.Item(i) member call, Rubberduck’s job is to help you do exactly that without needing to remove/export the code file, tweak it manually in Notepad++, then re-import it back into the project – that’s why the @DefaultMember annotation exists: because for the rare cases where you do want a default member, your ducky doesn’t let you down.

Currently, Rubberduck won’t complain if you make a parameterless procedure a default member. There’s an inspection idea that’s up-for-grabs to flag them though, if you’re looking for a fun contribution to an open-source project!

Late Binding

Ever wondered why sometimes the VBE tells you what the members of an object are, how to parameterize these member calls, what these members return… and other times it doesn’t? Late binding is why.

Rubberduck’s static code analysis is currently powerful enough to issue an inspection result for code that would fail to compile with VB.NET’s Option Strict enabled. It’s not yet implemented. But in the meantime, you can still benefit from writing modern VBA code that passes the Option Strict rules (at least as far as late binding is concerned)… and essentially eliminate the possibility for error 438 to ever be raised in your code.

If you’re coding against a dynamic API, then this isn’t really applicable. But for literally everything else, it’s a must.

What is Late Binding?

A quick Twitter survey revealed that a majority (67%) of VBA developers (well, at least those following the @rubberduckvba account) associate the term “late binding” with the CreateObject function. While it’s true that CreateObject is the only way to create an instance of an object for which you don’t have a compile-time reference, it’s mostly a mechanism for creating an object through a registry lookup: the function accepts a ProgID or a GUID that corresponds to a specific class that must exist in the Windows Registry on the machine that executes the code. If the ProgID does not exist in the registry, an error is raised and no object gets created. While this is useful for providing an alternative implementation (handle the error and return another, compatible object), it is rarely used that way – and then there’s this common misconception that CreateObject can somehow magically create an object out of thin air, even if the library doesn’t exist on the target machine. If you’re reading a blog that says or insinuates something to that effect (I’ve seen a few), close that browser tab immediately – you’re being grossly mislead and there’s no telling what other lies can be on that page.

If you’re still skeptical, consider these two simple lines of code:

Dim app As Excel.Application
Set app = CreateObject("Excel.Application")

Assuming this code compiles, no late binding happening here: all CreateObject is doing, is take something very simple (Set app = New Excel.Application) and make it very complicated (locate the ProgID in the registry, lookup the parent library, load the library, find the type, create an instance, return that object).

Late binding occurs whenever a member call is made against the Object interface.

Dim app As Object
Set app = CreateObject("Excel.Application")

If we’re not in Excel and need some Excel automation, referencing the Excel type library gives us the ability to bind the Excel.Application type at compile-time, however early binding is version-specific… which means if you code against the Excel 2016 type library and one of your users is running Excel 2010, there’s a chance that this user can’t compile or run your code (even if you’re careful to not use any of the newer APIs that didn’t exist in Excel 2010) – and this is where late binding is useful: now the code works against whatever version of the library that exists on that user’s machine (still won’t magically make a Worksheet.ListObjects call succeed in, say, Excel 2003). The downside is, obviously, that you can’t declare any Worksheet or Workbook object: since the library isn’t referenced, the compiler doesn’t know about these classes, or any of the xlXYZ global constants defined in that library.

Things get hairy when you start using late binding for libraries that are essentially guaranteed to exist on every Windows machine built this century. Like Scripting, or several others – if your code can’t work without these libraries present, late-binding them isn’t going to solve any problem. Rather, it will likely cause more of them… because late-bound code will happily compile with typos and glaring misuses of a type library; you don’t get IntelliSense or parameter QuickInfo as you type, and that is basically the best way to run into run-time error 438 (member not found):

Dim d As Object
Set d = CreateObject("Scripting.Dictionary")
d.Add "value", "key" 'or is it "key", "value"?
If d.ContainsKey("key") Then 'or is it d.Exists("key")?
   '...
End If

It’s not about project references

Late binding isn’t about what libraries are referenced and what types need to be created with CreateObject though: not referencing a library forces you to late-bind everything, but late binding can (and does!) also occur, even if you don’t use anything other than the host application’s object model and the VBA standard library: every time anything returns an Object and you make a member call against that object without first casting it to a compile-time known interface, you are making a late-bound member call that will only be resolved at run-time.

Try typing the below examples, and feel the difference:

Dim lateBound As Object
Set lateBound = Application.Worksheets("Sheet1")
latebound.Range("A1").Value = 42

Dim earlyBound As Worksheet
Set earlyBound = Application.Worksheets("Sheet1")
earlyBound.Range("A1").Value = 42

Worksheets yields an Object that might be a Worksheet reference, or a Sheets collection (depending if you’ve parameterized it with a string/sheet name or with an array of sheet names). There are dozens of other methods in the Excel object model that return an Object. If you’re automating Excel from VB.NET with Option Strict turned on, late-bound member calls are outright forbidden.

VBA is more permissive, but it is our duty as VBA developers, to understand what’s happening, why it’s happening, and what we can do to make things more robust, and fail at compile-time whenever it’s possible to do so. By systematically declaring explicit types and avoiding member calls against Object, we not only accomplish exactly that – we also…

  • Learn to work with a less permissive compiler, by treating late-bound calls as if they were errors: hopping into the .NET world will be much less of a steep learning curve!
  • Learn to work better with the object model, better understand what types are returned by what methods – and what to look for and what to research when things go wrong.
  • Write code that better adheres to modern programming standards.

Late binding isn’t inherently evil: it’s a formidable and powerful tool in your arsenal. But using it when an early-bound alternative is available, is abusing the language feature.

Whenever you type a member call and the VBE isn’t telling you what the available members are, consider introducing a local variable declared with an explicit type, and keeping things compile-time validated – as a bonus, Rubberduck will be able to “see” more of your code, and inspections will yield fewer false positives and fewer false negatives!

Rubberduck 2.4.1: ThunderFrame Edition

As was shared a week or two ago on social media, Rubberduck contributor and supporter Andrew “ThunderFrame” Jackson passed away recently – but his love for VBA, his awesomely twisted ways of breaking it, his insights, the 464 issues (but mostly ideas, with 215 still open as of this writing) and 30 pull requests he contributed to Rubberduck, have shaped a large part of what this project is all about, and for this release we wanted to honor him with a special little something in Rubberduck, starting with the splash screen.

Andrew joined the project very early on. He gave us the signature spinning duckies and the SVG icon of the project; he once implemented a very creative way to make unit testing work in Outlook (and I know a certain duck that had to eat their hat because of it!), before the feature was made host-agnostic. He gave us the weirdest, most completely evil-but-still-legal VBA code we could possibly test Rubberduck’s parser/resolver with – and we’re very proud to have a ThunderCode-proof parser now!

What’s New?

This isn’t an exhaustive list. See the release notes for more information.

¡Rubberduck ahora habla español!

This release introduces Spanish language support. German, French, and Czech translations have also been updated.

Rubberduck doesn’t speak your language yet? Nothing would make us happier than helping you help us translate Rubberduck! See contributing.md for all the details, and don’t hesitate to ask any questions you have – go on, fork us!

The project’s many resource files are easily handled with the ResX Manager add-in for Visual Studio.

UI Enhancements

The Test Explorer has had a rather impressive facelift, Inspection Results are now much easier to review, navigate and filter. There is a known issue about the GroupingGrid control expanding/collapsing all groupings together, but we weren’t going to hold back the release for this – we will definitely address it in a near-future release though.

Toggle buttons in the toolbar now allow filtering inspection results by severity, and grouping by inspection type, by module, by individual inspection, or by severity.
Similar toggle buttons in the Test Explorer allow grouping tests by outcome, module, or category. Tests can be categorized by specifying a category name string as an argument to the @TestMethod annotation.

Parser performance has improved, especially for the most common usages of “bang” (foo!bar) notation, which remain a difficult language construct to handle. But they’re also late-bound, implicit, default member calls that would probably be better off made explicit and early-bound.

Self-Closing Pair completion works rather nicely now, with only two known, low-priority edge cases that don’t behave quite as nicely as they should.

Easter Is Coming

And with Easter comes… White Walkers Easter Eggs, so all I’m going to say, is that they’ll be flagging ThunderCode – the kind of code our friend loved to test & push the limits of Rubberduck’s parser with. If your code trips a ThunderCode inspection, …nah, it can’t happen.

Woopsie, might happen after all. We’ll eventually figure out a way to hide them from the settings!

Also it’s apparently not impossible that there’s no way no other Easter Eggs were never not added to Rubberduck. For the record I don’t know if this means what I think I mean it to say, and that’s perfect.

What’s Next?

Some very important changes have been waiting for this release and will be merged in the next few weeks – these changes won’t necessarily be visible from a user standpoint, but they will greatly enhance our internal API – refactorings, COM object management, and we’ll be leveraging more of the TypeLibs API, which in turn should end up translating into greatly enhanced user experience and feature set.

Next release will include a few new inspections, including one that locates obsolete While...Wend loops, and suggests to rewrite them as Do While...Loop blocks, which can be exited with an Exit Do statement, whereas While loops can only be prematurely exited (without throwing an error) by an inelegant GoTo jump.

We really want to tighten our release cycle, so we’ll be shooting for the end of April for what should be version 2.4.2.

Rubberduck v2.4.0

Unlike quite a number of Rubberduck releases, this time we’re not boasting a thousand commits though: we’re looking at well under 300 changes, but if the last you’ve seen of Rubberduck was 2.3.0 or prior, …trying this release you’ll quickly realize why we originally wanted to release it around Christmas.

So, here’s your belated Christmas gift from the Rubberduck dev team!

VBE Project References: CURED!

You may have seen the Introducing the Reference Explorer announcement post last autumn – well, the new feature is now field-tested, works beautifully, instinctively, and is ready for prime time. It’s a beauty!

The add/remove references dialog has seen a number of enhancements since its pre-release: thanks everyone for your constructive feedback!
Quickly locate any type library by name and/or description.
Pin your favorite references, and Rubberduck will keep them handy for all your VBA/VB6 projects.

You’ll never want to use the vanilla-VBE references dialog again!

If you’ve been following the Rubberduck project for quite some time, you may remember something about using annotations together with inspections and quick-fixes to document the presence of module & member attributes. You may also remember when & why the idea was dropped. Keeping in tradition with including new inspections every release… Surprise, it’s coming back!

German, French, and Czech translations have been updated, a number of bugs were fixed in a few inspections, the Code Explorer has seen a number of subtle enhancements, and WPF binding leaks are all but gone.

Code Explorer Enhancements

Adding the Reference Explorer made a perfect opportunity to revisit the Code Explorer toolwindow – our signature navigation feature. Behold, the new Code Explorer:

The new ‘Sync with code pane’ toolbar button (the left/right arrows icon) selects the treeview node closest to the current code pane selection.

There’s a new ‘Library References’ node that shows your project’s library dependencies …whether they’re in use or not:

Find all references can now be used to locate all uses of a given type library – including the built-in standard libraries! Note that rendering lots of search results in a toolwindow will require confirmation if there are too many results to display.

The project reference nodes get new icons:

Classes with a VB_PredeclaredID attribute set to True now have their own icon too (and their names now say (Predeclared) explicitly), and class modules marked with an @Interface annotation now appear with an “interface” icon, like IGameStrategy here:

Annotations & Attributes

They’re back, and this time it does work, and it’s another game changer: Rubberduck users no longer need to export any code file to modify module & member attributes!

Module & Member Annotations

At module level, the @ModuleDescription annotation can be given a string argument that controls the value of the module’s VB_Description attribute; the @Exposed annotation controls the value of the VB_Exposed attribute; the presence of a @PredeclaredId annotation signals a VB_PredeclaredId attribute with a value of True.

At member level, @Description annotations can be given a string argument that controls the value of the member’s VB_Description attribute.

Through inspections, Rubberduck is now able to warn about attributes that don’t have a corresponding annotation, and annotations that don’t have a corresponding attributes. Look for inspection results under the “Rubberduck Opportunities” category.

v2.4.x

The months to come will see further enhancements in several areas; there are several pull requests lined up already – stay tuned, and keep up with the pre-release builds by watching releases on GitHub!

Code Insights with Rubberduck + Excel

You’re writing a rather large VBA/VB6 project, and you’re starting to have a sizable amount of passing unit tests. Did you know you can copy the test results to the clipboard with a single click?

…and then paste them onto a new worksheet and turn it into a data table:

If you’re not sure what to do next, you can even let Excel give you ideas – you’ll find the Recommended Charts button under the Insert Ribbon tab:

With the count of method by component chart, we can see what test modules have more test methods; the sum of duration by component chart can show us which test modules take the longer to execute – or we could average it across test categories, or archive test results and later aggregate them… and then use this data to performance-profile problematic test scenarios.

Similarly, the “Copy to Clipboard” button from the Code Explorer can be used to export a table into Excel, and using the recommended pivot tables feature, we can get a detailed breakdown of the project – for example count of names by declaration type creates a pivot table that lists all Rubberduck declaration types, so you can easily know how many line labels your project has, or how many Declare Function imports are used:

With a little bit of filtering and creativity, we can regroup all Constant, Function, PropertyGet and Variable declarations by return type, and easily identify, say, everything that returns a Variant:

The possibilities are practically endless: the data could be timestamped and exported to some Access or SQL Server database, to feed some dashboard or report showing how a project grows over time.

How would you analyze your VBA projects? What code metrics would you like to be able to review and pivot like this? Share your ideas, or implement them, and send a pull request our way!