Once upon a time I was quite active on Stack Overflow, and then there was a discussion on the meta site about the various “flavors” of VBA and I won’t get into the details here, but I remember it irked me that a bunch of very meticulous, very technical and often terminally pedantic folks would be conflating the language itself with… just some of its common libraries.
VBA – the programming language – is just VBA. One could reasonably argue that the standard library can be considered a part of it, but that’s where I draw the line: there’s no “Excel VBA” or “Word VBA” or “Access VBA”… calling different member calls into different objects from different libraries a different language altogether makes no sense to me. It’s the same grammar and syntax, it’s the same runtime, and host-agnostic code will run exactly the same in every conceivable host application (and there are many more than just the handful of Microsoft Office ones!): a programming language is not defined by the libraries it binds at compile time (nor at run time for that matter), but its type system, its syntax, and its semantics define it unambiguously – and all of these are all identical in all conceivable “flavors” of VBA… because that is what makes it VBA: its language specifications.
What’s different in different hosts, is the objects you’re working with and even then, that’s limited to the default references (arguably should be an… IDE setting?) while assuming you’re not automating Excel from an Access project, for example: the objects you’re working with depend on what your code needs to do, and so everything is just plain VBA no matter how you might want your favorite host application to be special. No flavors, it’s all plain vanilla.
Library rhymes with Vocabulary
Libraries are a special type of executable file that define types and their members, and then other executables can dynamically link these types and invoke these methods, so we call them dynamic link libraries, or DLLs. They are abstractions for various APIs, and they quite literally extend the vocabulary of a program with nouns (types/classes) and verbs (methods) that do color the expression of the language, but yeah it’s just colorful vanilla. I mean your own classes and methods’ names do exactly that, too – right?
COM libraries act as servers and they use and expose a specific set of interfaces that all COM clients (COM is all about client/server) understand, so VBA can reference and use such libraries, because VBA is built on top of this technology. COM is the Component Object Model, which is a development toolkit for Microsoft Windows that was very popular in the 1990s, until the .NET Framework changed the landscape in the early 00s. The model was language-independent, but not platform-independent like today’s modern .net is, so it’s particularly impressive to see VBA code running on a Mac, but I digress. The cool part is that whenever a VBA project compiles, a COM library gets generated in-memory within the host process, and when we run VBA code, what’s actually running is the compiled library – the VBA source code does not get interpreted in the editor as such.
In fact the VBA source code in the editor is basically decompiled from the p-code tokens generated by compiling the original source code and that is why the VBE always seems to “autocorrect” when you validate a line 🤯
Browsing Libraries
The language implements the COM type system but hides pointers and invocation mechanisms (IDispatch and IUnknown interfaces), and (somewhat hidden) attributes control type and member metadata, including documentation. VBA projects can leverage all of these capabilities with or without Rubberduck, but Rubberduck does make it much easier to manipulate the hidden VB_Attribute statements.
The VBE’s Object Browser reveals everything, even hidden members (fun fact, VBA doesn’t honor the “hidden” flag for user code like it does for referenced libraries, but VB6 did). Right-click anywhere and make sure “Show hidden members” is checked, and then they’ll show up here and in name completion lists. In the search/filter section there’s a dropdown listing all loaded libraries: notice your own compiled VBA project is listed there.
Global (namespace) pollution
Everything that’s public in a library, becomes part of the global namespace once it’s loaded into a runtime environment – so what happens when two libraries define classes with identical names? Sure a good practice is to qualify library types (e.g. Excel.Application, Word.Range, etc.) so that the code is clear and works as intended, but how does it still work when we don’t? Or does it?
Turns out, the up/down arrows that let you move libraries up and down the list in the add/remove references dialog, is the answer: referenced libraries are prioritized in order, which is why the VBA standard library and the host application’s object model library are stuck at the top (in that order) while everything else is allowed to move up and down.
When VBA binds a Range declaration, if the host is Microsoft Word then an unqualified Range is always a Word.Range, but if the host is Microsoft Excel then an identical declaration would bind to Excel.Range, even if the Word and Excel libraries are referenced in both cases, because the library provided by the host application always has a higher priority than a library reference that was added afterwards. Things get more hairy when you’re in an Access project that references DAO and you want to use ADO and suddenly you’ve rewritten [DAO.]Recordset into [ADO.]Recordset just by accidentally flipping the libraries’ respective priorities.
Know Your Tools
Whenever you face a new library – be it a new host, Scripting, or regular expressions, using the Object Browser to get acquainted with the types and members can often be all the direction we need to know exactly what to look for in the documentation (or Stack Overflow), and it should be exactly what a certain “AI” chat bot pulls for you (ideally with some reference links) if you ask it the same.
The VBA standard library provides a small set of basic functions and constants that are necessarily available to any VBA project, so a host-agnostic module can use them freely. This library is the closest thing to a framework VBA gets out of the box: the functions are mostly wrappers around Win32 API calls, making it easy to display message boxes, manipulate strings and dates, and to perform a number of basic math and trigonometry operations.
As a VBA developer, it is absolutely essential to understand what the VBA standard library does (and what it does not), because it’s easy to reinvent the wheel if you don’t know it’s already there. It’s a very small library compared to the .NET Framework, and as such it’s very much bare-bones – which means it’s good material for a backbone to build upon. Take the time it takes to play with each of the string and date functions, take an eyeball to the math functions so you know what’s there when you need it, and then explore the rest of the library and lookup the documentation for anything you don’t understand: the VBA standard library is one of your primary tools, it’s a good idea to know how to wield it.
The Excel library is much larger, but manageable if you focus on Application, Workbook, Worksheet, Range, and Name classes and their members, and learn the rest from the documentation and tutorials/examples as needed. But then there’s something sneaky the library does, that leverages these COM features we discussed earlier. Some hidden classes are taking members that would belong to the Application, members that belong to the active Workbook and Worksheet, and punts them into global scope “for your convenience”.
And that’s where everything went wrong in my opinion: these “convenient” members are a trap, and they obscure what’s going on so much that it’s often impossible to know exactly what VBA code does without additional context, such as whether the presented code is written in a worksheet module or elsewhere (perhaps in a standard module). It is my opinion and that of many other professionals, that good code does what it says, and says what it does. And this isn’t it.
It’s in the docs!
Not going to happen in a million years, but Microsoft should break badly written Excel macros by deprecating and removing the magic ActiveSheet members from the hidden _Global interface. Ok maybe not. But ugh.
VBA is a simple language on the surface, but it’s easy to confuse some keywords with standard library functions (quick: LBound/UBound, keywords or functions?), and even some standard library functions with some in the Excel library (InputBox springs to mind). Add implicit default members to the mix and you get code that can really throw you a wrench and make you wonder what you’ve been drinking. “The same code worked perfectly just yesterday”, and “it works fine normally, but errors when I step through with the debugger” are all too common, and always directly caused by all the ever-so-convenient beginner traps.
One part of the problem is that many self-taught and learning developers do not necessarily know not to read too much into examples in technical documentation: if you’re reading about the Worksheet.Range method, the examples aren’t there to show you how to, say, properly declare variables, or pass inputs as parameters – and so they don’t… but that doesn’t mean your code should look exactly like the documentation examples! Macro recorder code is just the same: just because it works off implicit ActiveSheet references does not mean good VBA code should be doing that. The macro recorder can quickly teach you what types and members are involved in making a table out of a range of cells, but it’s not meant to show you how to do that beyond the context of the active sheet and the current selection, which are two things you’re actually going to want to be very explicit about in your own code. This goes on for virtually every topic under the Sun: unless you’re specifically reading something about best practices, don’t try to read naming conventions or particular ways to do things from small contrived examples that mean to depict and highlight a single other entirely different thing. Sometimes I wonder how different the world would have been if all examples were written as standalone functions that explicitly take all their inputs as parameters…
Both the VBA standard library and the Excel object model are extensively documented, but the Excel library and a lot of its examples are often making it hard to find the right place to look at when there’s a problem, because of all the implicit shenanigans: it’s not that VBA itself is making all the wrong design decisions here – but the Excel library is leveraging COM/VBA features in such a way that it remains trapped in a very 1990’s notion of what “convenient” means, for the better or worse.
🫶✌️
